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28.  Narrowband Noise Representation

In most communication systems, we are often dealing with band-pass filtering of signals.
Wideband noise will be shaped into bandlimited noise.  If the bandwidth of the bandlimited
noise is relatively small compared to the carrier frequency, we refer to this as narrowband
noise.  Figure 28.1 shows how to generate narrowband noise from wideband noise.

Figure 28.1  Generation of narrowband noise.

We can derive the power spectral density Gn(f) and the auto-correlation function

Rnn(τ) of the narrowband noise and use them to analyse the performance of linear

systems.  In practice, we often deal with mixing (multiplication), which is a non-linear
operation, and the system analysis becomes difficult.  In such a case, it is useful to express
the narrowband noise as

n(t) = x(t) cos 2πfct - y(t) sin 2πfct (28.1)

where fc is the carrier frequency within the band occupied by the noise.  x(t) and y(t)

are known as the  quadrature components of the noise n(t).  The Hibert transform of
n(t) is

n̂ (t) = H[n(t)] = x(t) sin 2πfct + y(t) cos 2πfct (28.2)

Proof.

The Fourier transform of n(t) is

N(f) = 
1
2 X(f - fc) + 

1
2 X(f+ fc) + 

1
2 jY(f- fc) - 

1
2 jY(f+ fc)

Let N̂ ( f) be the Fourier transform of n̂ ( t).  In the frequency domain,

N̂ (f) = N(f)[- j  sgn(f)].  We simply multiply all positive frequency components of
N(f) by -j and all negative frequency components of N(f) by j.  Thus,

N̂ (f) = -j
1
2 X(f-fc)+ j

1
2 X(f+ fc) - j

1
2 jY(f- fc) - j

1
2 jY(f+ fc)

N̂ (f) = -j
1
2 X(f - fc) + j

1
2 X(f+ fc) + 

1
2 Y(f- fc) + 

1
2 Y(f+ fc)

and the inverse Fourier transform of N̂ (f) is

n̂ (t) = x(t) sin 2πfct + y(t) cos 2πfct Q.E.D.
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The quadrature components x(t) and y(t) can now be derived from equations (28.1)
and (28.2).

x(t) =  n(t)cos 2πfct + n̂ (t)sin 2πfct (28.3)

and

y(t) =  n(t)cos 2πfct - n̂ (t)sin 2πfct (28.4)

Given n(t), the quadrature components x(t) and y(t) can be obtained by using the
arrangement shown in Figure 28.2.

Figure 28.2  Generation of quadrature components of n(t).

x(t) and y(t) have the following properties:

1. E[x(t) y(t)] = 0.  x(t) and y(t) are uncorrelated with each other.
2. x(t) and y(t) have the same means and variances as n(t).
3. If n(t) is Gaussian, then x(t) and y(t) are also Gaussian.
4. x(t) and y(t) have identical power spectral densities, related to the power

spectral density of n(t) by

Gx(f) = Gy(f) = Gn(f- fc) + Gn(f+ fc) (28.5)

for  fc - 0.5B <  | f | <  fc + 0.5B and B is the bandwidth of n(t).  

Proof.   (Under Construction)

Equation (28.5) is the key that will enable us to calculate the effect of noise on AM and FM
systems.  It implies that the power spectral density of x(t) and y(t) can be found by
shifting the positive portion and negative portion of Gn(f) to zero frequency and adding

to give Gx(f) and Gy(f).  This is shown in Figure 28.3.

Figure 28.3 (a) Power spectral density of n(t),  (b) Power spectral density of x(t)
and y(t).

In the special case where Gn(f) is symmetrical about the carrier frequency fc, the

positive- and negative-frequency contributions are shifted to zero frequency and added to
give
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Gx(f) = Gy(f) = 2Gn(f- fc) = 2Gn(f+ fc) (28.6)

Example 28.1

Given that the power spectral density of a narrowband Gaussian noise of variance σ2 and
power N is

Gn(f) = N
2

1

2πσ2
e

−
(f −fc )

2

2σ 2
+N

2
1

2πσ2
e

−
(f +fc )

2

2σ 2

where fc is the carrier frequency within the band occupied by the noise, then the power

spectral densities of the quadrature components of the noise are

Gx(f) = Gy(f) = 2Gn(f+ fc) = N
1

2πσ2
e

− f
2

2σ 2

This is shown in Figure 28.4.

Figure 28.4 (a) Power spectral density of narrowband Gaussian noise n(t),  (b) Power
spectral density of x(t) and y(t).

Performance of Binary FSK

Figure 28.5  Synchronous detection of binary FSK signals.

Consider the synchronous detector of binary FSK signals shown in Figure 28.5.  In the
presence of additive white Gaussian noise (AWGN), w(t), the received signal is 

r(t) =  Acos 2πfc1t + w(t)

where A is a constant and fc1 is the carrier frequency employed if a 1 has been sent.  The

signals at the output of the band-pass filters of centre frequencies fc1 and fc2 are

r1(t) = Acos 2πfc1t + n1(t)

and
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r2(t) = n2(t)

where

n1(t) = x1(t) cos 2πfc1t - y1(t) sin 2πfc1t

and

n2(t) = x2(t) cos 2πfc2t - y2(t) sin 2πfc2t

are the narrowband noise.  With appropriate design of low-pass filter and sampling period,
the sampled output signals are

vo1 = A + x1

vo2 = x2

and

v = A + [x1 - x2].

x1 and x2 are statistically independent Gaussian random variables with zero mean and

fixed variance σ2  = N, where N is the power of the random variable.  It can be seen
that one of the detectors has signal plus noise, the other detector has noise only.  

When  fc2 is the carrier frequency employed for sending a 0, the received signal is 

r(t) =  Acos 2πfc2t + w(t).  

It can be shown that

v = -A + [x1 - x2] 

Since E [ x1 - x2] 2 = E [ x1] 2 - 2E [ x1x2] 2 + E [ x2] 2 = E [ x1] 2 + E [ x2] 2 =

σ2 + σ2, the total variance σt2 = 2σ2 .  The two distributions of v are shown in

Figure 28.6.

Figure 28.6  Conditional probability density function.
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The conditional probability density function of v assuming a 0 is sent is

f(v/0)  = 1

2 2

2

2 2

πσ
σ

t

e

v A

t
− +( )

and the probability of error given a 0 is sent is

Pe0  =  
0

∞
∫ f(v/0)dv 

= 1

2 2

2

2 2

0 πσ
σ

t

e

v A

t dv

− +
∞
∫

( )

(28.7)

Similarly, the probability of error given a 1 is sent is

Pe1  = 1

2 2

2

2 20

πσ
σ

t

e

v A

t dv

− −

−∞
∫

( )

= Pe0

Let  p0 be the probability of sending a 0 and  p1 be the probability of sending a 1.  For

equally likely transmission of binary signals, we have p0 = p1 = 0.5.  The average

probability of error is given by

Pe = p0 Pe0 +  p1 Pe1
= Pe0

Let u = v A
t

+
2σ

.  Then u2 = ( )v A

t

+ 2

2 2σ
 and du = dv

t2σ
 .  Substituting u and du into

equation (28.7), we get

Pe = 
1
π

u = A
2σt

∞
∫ e-u2 du 

= 
1
2 [

2
π

u

∞
∫ e-u2 du ] (28.8)
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Equation (28.8) becomes

Pe = 
1
2  erfc( A

2σt
) 

= 
1
2  erfc( A

2σ ) 

= 
1
2  erfc( A

2 N
).

Similarly, we can use this approach to derive the average probability of error for BASK
and BPSK systems.  In the BASK system, the synchronous detector output consists of a
signal  A plus noise or a noise alone.  In the BPSK system, the synchronous detector
output consists of a polar signal + A plus noise.  The results are summarised in Table 28.1

________________________________________________________________________

BPSK Pe= 
1
2  erfc( A

2N
)

BFSK Pe= 
1
2  erfc( A

2 N
)

BASK Pe= 
1
2  erfc( A

2 2N
)

________________________________________________________________________

Table 28.1  Performance of various modulation systems.
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Figure 28.1  Generation of narrowband noise.
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Figure 28.2  Generation of quadrature components of n(t).
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Figure 28.3 (a) Power spectral density of n(t).  (b) Power spectral density of x(t)
and y(t).
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Figure 28.4 (a) Power spectral density of narrowband Gaussian noise n(t).  (b) Power
spectral density of x(t) and y(t).
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Figure 28.5  Synchronous detection of binary FSK signals.
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Figure 28.6  Conditional probability density function.
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