Narrowband Noise Representation on Mac

28. Narrowband Noise Representation
In most communication systems, we are often dealing with band-pass filtering of signals.
Wideband noise will be shaped into bandlimited noise. If the bandwidth of the bandlimited
noise is relatively small compared to the carrier frequency, we refer to thisras/band
noise Figure 28.1 shows how to generate narrowband noise from wideband noise.

Figure 28.1 Generation of narrowband noise.

We can derive thg@ower spectral densit@n(f) and theauto-correlation function

Rnn(1) of the narrowband noise and use them to analyse the performahoe af
systems In practice we often deal witmixing (multiplication), which is aion-linear
operation and the system analysis becomes difficult. In such a case, it is useful to express
the narrowband noise as

n(t) = x(t) cos 21t - y(t) sin 2rft (28.1)
wherefc is the carrier frequency within the band occupied by the noifg.andy(t)
are known as thequadrature componentf the noisen(t). TheHibert transformof
n(t) is

A (1) = Hn(t)] = x(t) sin 2t + y(t) cos 2t (28.2)

Proof.

The Fourier transform of(t) is
1 1 1. 1.
N(f) = §X(f -fo) + §X(f+ fo) + 7]Y(f- fo) - > JY(f+ fo)

Let l<l\ (f) be the Fourier transform of (t). In the frequency domain,

N (f) = N(f)[-] sgnf)]. We simply multiply all positive frequency components of
N(f) by 4 and all negative frequency component®N@) byj. Thus,

Ao 1 1. 1.
N (f) = 4 5 X(f-f)+ ] 5 X(f+ o) -] 5)Y(F-fe) -] 5 Y(F+ f)
N -1 o1 1 1
N (1) =95 X([ - ) +i 5 X[+ 1) + 5 Y(-fo) + 5 Y(F+ o)
and the inverse Fourier transformiof (M is
A (t) = x(t) sin 2rfct + y(t) cos 2t Q.E.D.

28.1



Narrowband Noise Representation on Mac

The quadrature componentét) andy(t) can now be derived from equations (28.1)
and (28.2).

X(t) = n(t)cos 2fct +1f (t)sin 2nft (28.3)
and
y(t) = n(t)cos 2t - 11 (t)sin 27t (28.4)

Given n(t), the quadrature componentét) andy(t) can be obtained by using the
arrangement shown in Figure 28.2.

Figure 28.2 Generation of quadrature components(of.
x(t) andy(t) have the following properties:

E[x(t) y(t)] = 0. x(t) andy(t) are uncorrelated with each other.

x(t) andy(t) have the same means and variancegtas

If n(t) is Gaussian, thex(t) andy(t) are also Gaussian.

X(t) andy(t) have identical power spectral densities, related to the power
spectral density ai(t) by

A WN PP

Gx(f) = Gy(f) = G(f- fe) + Gn(f+ o) (28.5)
for fc- 0.5B< |f| < fc +0.5B andB is the bandwidth ofi(t).
Proof. (Under Construction)
Equation (28.5) is the key that will enable us to calculate the effect of noise on AM and FM
systems. It implies that the power spectral densitx(fandy(t) can be found by
shifting the positive portion and negative portionG{(f) to zero frequency and adding

to give Gy(f) ande(f). This is shown in Figure 28.3.

Figure 28.3(a) Power spectral density oft), (b) Power spectral density &ft)
andy(t).

In the special case whef@n(f) is symmetrical about the carrier frequerfgy the

positive- and negative-frequency contributions are shifted to zero frequency and added to
give
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Gx(f) = Gy(f) = 2n(f- fe) = 26n(f+ fo) (28.6)
Example 28.1

Given that the power spectral density of a narrowband Gaussian noise of vafamze
powerN is

€ 4)° € +#.)°
_N 1 2;2 N 1 2;2
Cn) == —=* Yo
aio aio

wherefc is the carrier frequency within the band occupied by the noise, then the power
spectral densities of the quadrature components of the noise are

1 252

Gx(f) = Gy(f) = o (f+ fe) =N———=e
J o?
This is shown in Figure 28.4.

Figure 28.4 (a) Power spectral density of narrowband Gaussian nfige (b) Power
spectral density of(t) andy(t).

Performance of Binary FSK
Figure 28.5 Synchronous detection of binary FSK signals.

Consider the synchronous detector of binary FSK signals shown in Figure 28.5. In the
presence ohdditive white Gaussian noigfAWGN), w(t), the received signal is

r(t) = Acos 21fclt + w(t)

whereA is a constant aniél is the carrier frequency employed if a 1 has been sent. The
signals at the output of the band-pass filters of centre freque&ggfimals*.dfc2 are

ri(t) = Acos ¢t +nq(t)

and
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ra(t) = na(t)
where
nq(t) = x1(t) cos szclt -y1(t) sin 2nfC1t
and
no(t) = xo(t) cos szczt - yo(t) sin 2nf02t

are the narrowband noise. With appropriate design of low-pass filter and sampling period,
the sampled output signals are

Vo1 =A+X1
Vo2 =X2

and
vV=A+[X1-Xx2].

X1 andxp are statistically independent Gaussian random variableszeith mearand

fixed variancec2 =N, whereN is the powerf the random variable. It can be seen
that one of the detectors has signal plus noise, the other detector has noise only.

When fC2 is the carrier frequency employed for sending a 0, the received signal is
r(t) = Acos 21fC2t + w(t).

It can be shown that
v="-A+[X]-x9]

Since E[x] - x2]2 = E[x1]12 - 2E[x1x2]2 + E[x2]2 = E[x1]2 + E[x2]2 =

02 + g2, the total variancesi? = 202 . The two distributions of are shown in
Figure 28.6.

Figure 28.6 Conditional probability density function.
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The conditional probability density functionwissuming a 0 is sent is

_(v+A)?
5
f(vi0) = #Ze 20t

\ 2not

and the probability of error given a 0 is sent is

00
Peo = [ f(v/0)dv
0
_(v+A)?
00 2
=(—L_e 29T (28.7)
0\;“27Tat2

Similarly, the probability of error given a 1 is sent is

. _(v-A?
2
-1 o 20
Pe1 J’ Jz 2e dv
—o0 \| £710¢
:Peo

Let pg be the probability of sending a 0 apd be the probability of sending a 1. For
equally likely transmission of binary signals, we hag=p1 = 0.5. The average
probability of error is given by

Pe =poPe0+ P1Pe1
:Peo

2
Letu= VA Theny2 =(V*A) ~ v gypstitutingu anddu into

: anddu =
V20t 20f V2o
equation (28.7), we get

[0¢]
Pe = IA ‘/—%e'uzdu

c
|
5

1. 2

= S[= [ ' du] (28.8)

|
c“— 8

28.5



Narrowband Noise Representation on Mac

Equation (28.8) becomes

Pe = erfc(A—

J 20,

erfc(%)

NN, N

erfc(A—Z/N_).

Similarly, we can use this approach to derive the average probability of error for BASK
and BPSK systems. In the BASK system, the synchronous detector output consists of a
signal A plus noise or a noise alone. In the BPSK system, the synchronous detector
output consists of a polar signalA plus noise. The results are summarised in Table 28.1

BPSK Pe= % erfc(%)
BFSK Pe= % erfc(A—z/N_)
BASK Pe= 3 erfdﬁ)

Table 28.1 Performance of various modulation systems.
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Figure 28.1 Generation of narrowband noise.
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Figure 28.2 Generation of quadrature components(j.
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Figure 28.3(a) Power spectral density oft). (b) Power spectral density &ft)
andy(t).
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Figure 28.4(a) Power spectral density of narrowband Gaussian mfise (b) Power
spectral density af(t) andy(t).
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Figure 28.5 Synchronous detection of binary FSK signals.
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Figure 28.6 Conditional probability density function.
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